Последние новости
19 июн 2021, 22:57
Представитель политического блока экс-президента Армении Сержа Саргсяна "Честь имею" Сос...
Поиск

11 фев 2021, 10:23
Выпуск информационной программы Белокалитвинская Панорама от 11 февраля 2021 года...
09 фев 2021, 10:18
Выпуск информационной программы Белокалитвинская Панорама от 9 февраля 2021 года...
04 фев 2021, 10:11
Выпуск информационной программы Белокалитвинская Панорама от 4 февраля 2021 года...
02 фев 2021, 10:04
Выпуск информационной программы Белокалитвинская Панорама от 2 февраля 2021 года...
Главная » Библиотека » Рефераты » Рефераты биология и естествознание » Реферат : Механизм проведения нервного импульса

Реферат : Механизм проведения нервного импульса

 Реферат :  Механизм проведения нервного импульса

Нейрон — структурно-функциональная единица нервной системы

Нейрон (неврон, нервная клетка) — (от греч. neuron — нерв) — это основная функциональная и структурная единица нервной системы. Он принимает сигналы, которые поступают от рецепторов и нервных окончаний.

Разнообразие и сложность функций нервной системы зависят от числа составляющих её нейронов (около 102 у коловратки и более чем 1010 — у человека).

Нейрон преобразует полученные сигналы в нервные импульсы и передаёт их к эффекторным нервным окончаниям, которые в свою очередь контролируют деятельность исполнительных органов (мышцы, клетки железы или др.).

Нейрон формируется при эмбриональном развитии нервной системы. На стадии развития нервной трубки образуются нейробласты. Из нейробластов, в процессе дифференцировки, образуются нейроны. На рис. 1 показан процесс превращения нейробласта в нейрон. В это же время формируются специализированные части нейрона. На рис. 2 показано схематическое изображение нейрона и всех его основных частей, которые обеспечивают выполнение его функций.

Дендриты обладают избирательной чувствительностью к определённым сигналам. Они используются для восприятия информации. На поверхности дендритов расположена так называемая рецепторная мембрана.

[sms]

На рецепторную мембрану воздействуют процессы местного возбуждения и торможения. Эти процессы, суммируясь, воздействуют на наиболее возбудимый участок поверхностной мембраны нейрона — триггерную (пусковую) область.

Триггерная область служит местом возникновения (генерации) распространяющихся биоэлектрических потенциалов. Для их передачи используется другой отросток нейрона — аксон, или осевой цилиндр.

Аксон покрыт электровозбудимой проводящей мембраной. Нервный импульс, достигнув концевых участков аксона, возбуждает секреторную мембрану. Из секреторной мембраны выделяется физиологически активное вещество — медиатор или нейрогормон.

Структура, размеры и форма нейрона довольно сильно отличаются между собой.

Нейрон — живая клетка. У него есть ядро, которое вместе с околоядерной цитоплазмой образует тело клетки, или перикарион.

В перикарионе происходит синтез макромолекул. Часть этих макромолекул транспортируется по аксоплазме (цитоплазме аксона) к нервным окончаниям.

Нейроны коры больших полушарий головного мозга, мозжечка, некоторых других отделов центральной нервной системы имеют довольно сложное строение. Для мозга позвоночных характерны мультиполярные нейроны.

В мультиполярном нейроне от клеточного тела отходят несколько дендритов и аксон. Начальный участок аксона является триггерной областью. На клеточном теле этого нейрона и на его дендритах есть множество отростков, образующие нервные окончания.

У беспозвоночных наиболее распространен униполярный нейрон. Его особенностью является наличие единственного, так называемого вставочного отростка, соединяющего его с аксоном. У этих нейронов могут отсутствовать настоящие дендриты. Поэтому очень часто рецепцию синаптических сигналов осуществляют специализированные участки на поверхности аксона.

Биполярные нейроны — это нейроны с двумя отростками. Чаще всего это периферийно чувствительные нейроны, у которых один дендрит, направленный наружу, и один аксон.

По месту, занимаемому нейроном в рефлекторной дуге, нейроны делятся на

чувствительные (афферентные, сенсорные, или рецепторные). Эти нейроны получают информацию из внешней среды или от рецепторных клеток;

вставочные нейроны (или интернейроны). Связывают один нейрон с другим;

эффекторные (или эфферентные). Посылают свои импульсы к исполнительным органам (напр., мотонеироны, иннервирующие мышцы).
По химической специфичности, т. е. по природе физиологически активного вещества, которое выделяется нервными окончаниями данного нейрона, нейроны подразделяются на:

холинергический нейрон (секретирует ацетилхолин);

пептидергический (то или иное вещество пептидной природы) и т. д.
Механизм проведения нервного импульса

Синапсы — это специальные межклеточные соединения, используемые для перехода сигнала из одной клетки в другую.

Контактирующие участки нейронов очень тесно прилегают друг к другу. Но все же между ними зачастую остается разделяющая их синаптическая щель. Ширина синаптической щели составляет порядка нескольких десятков нанометров.

Чтобы нейтроны успешно функционировали, необходимо обеспечить их обособленность друг от друга, а взаимодействие между ними обеспечивают синапсы.

Хорошо известно, что электрический импульс не может преодолеть без существенных потерь энергии любую, даже самую короткую межклеточную дистанцию. Поэтому в большинстве случаев необходимо осуществлять преобразование информации из одной формы в другую, например, из электрической формы в химическую, а затем — опять в электрическую. Рассмотрим этот механизм подробнее.

Синапсы выполняют функцию усилителей нервных сигналов на пути их следования. Эффект достигается тем, что один относительно маломощный электрический импульс освобождает сотни тысяч молекул медиатора, заключенных до того во многих синаптических пузырьках. Залп молекул медиатора синхронно действует на небольшой участок управляемого нейрона, где сосредоточены постсинаптические рецепторы — специализированные белки, которые преобразуют сигнал теперь уже из химической формы в электрическую.

В настоящее время хорошо известны основные этапы процесса освобождения медиатора. Нервный импульс, т. е. электрический сигнал, возникает в нейроне, распространяется по его отросткам и достигает нервных окончаний. Его преобразование в химическую форму начинается с открывания в пресинаптической мембране кальциевых ионных каналов, состояние которых управляется электрическим полем мембраны. Теперь роль носителей сигнала берут на себя ионы кальция. Они входят через открывшиеся каналы внутрь нервного окончания. Резко возросшая на короткое время примембранная концентрация ионов кальция активизирует молекулярную машину освобождения медиатора: синаптические пузырьки направляются к местам их последующего слияния с наружной мембраной и, наконец, выбрасывают свое содержимое в пространство синаптической щели.

Рис. 3

Синаптическая передача осуществляется последовательностью двух пространственно разобщенных процессов: пресинаптического по одну сторону синаптической щели и постсинаптического по другую (рис. 3). Окончания отростков управляющего нейрона, повинуясь пришедшим в них электрическим сигналам, высвобождают в пространство синаптической щели специальное вещество-посредник (медиатор). Молекулы медиатора достаточно быстро диффундируют через синаптическую щель и возбуждают в управляемой клетке (другом нейроне, мышечном волокне, некоторых клетках внутренних органов) ответный электрический сигнал. В роли медиатора выступает около десятка различных низкомолекулярных веществ:

ацетилхолин (эфир аминоспирта холина и уксусной кислоты);

глутамат (анион глутаминовой кислоты);

ГАМК (гамма-аминомасляная кислота);

серотонин (производное аминокислоты триптофана);

аденозин и др.
Они предварительно синтезируются пресинаптическим нейроном из доступного и относительно дешевого сырья и хранятся вплоть до использования в синаптических пузырьках, где, словно в контейнерах, заключены одинаковые порции медиатора (по несколько тысяч молекул в одном пузырьке).

Схема синапса

Вверху — участок нервного окончания, ограниченный пресинаптической мембраной, в которую встроены пресинаптические рецепторы; синаптические пузырьки внутри нервного окончания наполнены медиатором и находятся в разной степени готовности к его освобождению; мембраны пузырьков и пресинаптическая мембрана содержат пресинаптические белки. Внизу — участок управляемой клетки, в постсинаптическую мембрану которой встроены постсинаптические рецепторы

Синапсы — удобный объект регулирования потоков информации. Уровень усиления сигнала при его передаче через синапс можно легко увеличить или уменьшить, изменяя количество освобождаемого медиатора, вплоть до полного запрета на передачу информации. Теоретически это можно осуществить путем направленного воздействия на любой из этапов высвобождения медиатора.

Именно на выяснение механизмов управления синаптической передачей и были устремлены усилия исследователей в лаборатории биофизики Института эволюционной физиологии и биохимии им. И. М. Сеченова РАН (Санкт-Петербург). Их эффективному проведению способствовала поддержка Международного научного фонда, позволив, в частности, оперативно приобрести современные приборы и разнообразные химические реактивы.

В качестве подходящего объекта исследования выбрали мышцу лягушки, изолированную вместе с управляющим нервом, такой препарат обладает главными достоинствами: однотипностью синапсов, удобством проведения разнообразных и достаточно тонких экспериментов, способностью изолированных тканей длительное время сохранять свою жизнеспособность. Поскольку основные свойства синапсов в разных тканях весьма сходны, полученные сведения можно использовать для анализа синаптической передачи в мозгу.

Свойства нервно-мышечных синапсов диктовали и методы регистрации. Одиночный акт передачи сигнала через синапс длится всего несколько тысячных долей секунды (миллисекунд), поэтому для его регистрации возможны только электрические измерения. С этой целью изолированный препарат помещают в ванночку с солевым раствором, с той же концентрацией ионов, как в плазме крови лягушки. Нерв укладывают на раздражающие электроды, а в мышечное волокно в непосредственной близости с синапсом вводят внутриклеточные микроэлектроды. Последние представляют собой тонкие стеклянные трубки, диаметр вытянутого кончика которых не превышает одного – двух микрометров. Микроэлектрод, заполненный концентрированным раствором хлористого калия, может служить для измерения разности потенциалов между внутренностью мышечного волокна и его поверхностью. Специальная система усилителей биоэлектрических сигналов позволяет одновременно регистрировать и быстрые изменения электрического тока, вызванные действием медиатора, и удерживать потенциал на мембране мышечного волокна на заданном уровне. Электрические синаптические ответы затем можно вывести на экран осциллографа (рис. 4), записать на магнитную ленту либо после преобразования в цифровую форму проанализировать на компьютере. Такая система позволяет экспериментатору оценивать изменения синаптической передачи в ходе опыта.

Рис. 4

Спонтанные постсинаптические токи, генерируемые мышечным волокном. Каждый сигнал — ответ на действие порции медиатора, освободившегося из синаптических пузырьков

Из работ наших предшественников уже было известно, что окончания двигательного нерва, управляющего сокращениями мышцы, чувствительны к некоторым химическим агентам, способным изменять количество освобождаемого медиатора. На поверхности пресинаптической мембраны нервных окончаний тоже имеются рецепторы, белковые "датчики", которые опознают действующий на них агент и запускают процесс регулирования. Нам предстояло выяснить, как это происходит, каким образом химический сигнал, воспринятый нервным окончанием, влияет на освобождения медиатора. Для этого надо было проследить всю цепочку молекулярных процессов — от воздействия химического агента на рецептор до конечной мишени его влияния.

Прежде всего, какие же химические агенты модулируют освобождение медиатора? Наибольший интерес для нас представляло пресинаптическое действие самих медиаторов. Биологический смысл использования одних медиаторов для регуляции освобождения других очевиден. Такой механизм обеспечивает вмешательство третьего нейрона в "разговор" первых двух: выделяемый им медиатор действует на нервное окончание управляющего нейрона и регулирует освобождение медиатора, предназначенного для передачи сигнала управляемому нейрону. Здесь, как правило, используются медиаторы разной химической природы: один для передачи по основному пути, а другой — для ее модуляции. Но медиатор может и сам управлять своим освобождением. Если из нервного окончания освобождается избыточное количество медиатора, это, в конце концов, приводит к нерациональным энергетическим затратам на синтез необходимых веществ и на восстановление режима готовности к новому рабочему акту. Наконец, перевозбуждение может стать губительным для управляемой клетки. Значит, необходима саморегулирующаяся система, основанная на принципе отрицательной обратной связи. Действительно, медиатор в нервно-мышечных синапсах, ацетилхолин, будучи выброшен в синаптическую щель, не только выполняет свою прямую обязанность — передать информацию (например, двигательный приказ мышечному волокну, действуя на его постсинаптические рецепторы), но и способен регулировать собственное освобождение, действуя через пресинаптические рецепторы нервных окончаний.

Принципиальная схема регуляции должна выглядеть следующим образом: медиатор действует на пресинаптический рецептор, изменения состояния рецептора передаются через некие промежуточные стадии на системы, способные влиять на выброс медиатора, — и в результате снижается вероятность этого события.

Нужно было ответить на целый ряд вопросов, логически связанных друг с другом. Прежде всего, определить, какой тип пресинаптического рецептора вовлечен в процесс саморегулирования. Оказывается, природа и здесь подошла к решению проблемы рационально. Для передачи двигательных сигналов используется один тип рецептора, рассчитанный на быстрое их преобразование, а для регулирования — рецепторы другого типа, работающие гораздо медленнее, но зато обеспечивающие высокий коэффициент усиления сигнала. Несмотря на то, что оба типа рецептора реагируют на один и тот же медиатор (ацетилхолин), в эксперименте, используя различия в их чувствительности к синтезированным химическим аналогам ацетилхолина, можно избирательно действовать на постсинаптические (пусковые) или на пресинаптические (регулирующие) рецепторы (рис.5).

Рис. 5

Эксперимент на мышце лягушки, демонстрирующей угнетения освобождения ацетилхолина из двигательных нервных окончаний в результате действия одного из его аналогов на пресинаптические рецепторы. Видно, что постсинаптические токи, вызванные периодическим раздражением нерва, при действии вещества значительно уменьшают свою амплитуду по сравнению с контрольным периодом

Следующая проблема: где расположена клеточная система, способная непосредственно модулировать освобождение медиатора, в пресинаптической мембране или внутри нервного окончания? Пресинаптическая мембрана, действительно, содержит элементы, от деятельности которых зависит реализация сигнала. Это пути, используемые ионами калия и кальция для прохождения через клеточную мембрану, — соответственно, калиевые и кальциевые ионные каналы. Может быть, активация пресинаптических рецепторов изменяет потоки этих ионов и тем самым модулирует освобождение медиатора?

Проведенные нами эксперименты отвергли это предположение. Оказалось, что активация пресинаптических рецепторов в равной мере подавляет освобождение медиатора, как вызванное раздражением двигательного нерва (оно, действительно, зависит от состояния кальциевых и калиевых каналов), так и спонтанное освобождение, на которое эти факторы существенно не влияют. Если в эксперименте кальциевые и калиевые каналы заблокированы, то регулирующее действие медиатора сохраняется. Более того, возможность регулирования не зависит от концентрации кальция внутри нервного окончания.

Эти результаты привели нас к важному выводу: конечную мишень регулирования надо искать внутри нервного окончания, в структурах, непосредственно ответственных за освобождение медиатора. Но прежде необходимо понять: как активированный пресинаптический рецептор передает эстафету дальше, внутрь клетки, каков механизм усиления этого сигнала? Типичный для большинства живых клеток способ решения подобной задачи состоит в сопряжении рецептора, расположенного на поверхности мембраны клетки, с универсальным передаточным устройством, внутриклеточным специализированным белком, который назвали Г-белком. Этот белок составлен, как правило, из нескольких субъединиц, образующих единый комплекс. Активация рецептора приводит к его обратимому разделению, и одна из составных частей обретает относительную свободу передвижения. Это позволяет ей взаимодействовать с целым рядом клеточных устройств: активировать или подавлять работу транспортных систем клетки, регулировать деятельность внутриклеточных ферментов и т. п. Таким образом, регулирующий сигнал в результате многократного усиления, в конце концов, изменяет определенную клеточную функцию.

Используется ли этот типичный механизм в исследуемом нами случае? Известно, что Г-белки описанного выше типа чувствительны к некоторым токсинам, продуцируемым микробами, например, коклюшной палочкой или холерным вибрионом. Наши эксперименты дали отрицательный ответ: ни коклюшный, ни холерный токсины не влияли на регуляцию освобождения медиатора. В то же время пресинаптическое действие медиатора сильно зависело от температуры: при снижении температуры раствора на 10 градусов оно исчезало, хотя сам медиатор высвобождался. Это означает, что в процесс передачи регулирующего сигнала вовлечены реакции, требующие поступления энергии извне, например ферментативные. Был получен также ряд косвенных свидетельств в пользу того, что природа нашла здесь не совсем обычный способ регуляции. В частности, можно предполагать, что белки, подобные Г-белкам, располагаются непосредственно на поверхности мембраны синаптических пузырьков.

Дальнейшее выяснение конкретного объекта регулирования предусматривает анализ возможного участия белковых компонентов, из которых собрана молекулярная машина освобождения медиатора. И тут мы подходим к проблеме наиболее трудной как для исследования, так и для непротиворечивого изложения. Дело в том, что существование такой машины и ее многокомпонентность очевидны. И хотя эту задачу пытаются решить представители самых разных направлений современной нейробиологии, пока видны лишь только контуры общей схемы. Основы подхода предложили нейрохимики. Они детально исследовали белки, которые можно обнаружить только в нервных окончаниях, справедливо полагая, что молекулярная машина освобождения медиаторов построена из них. Таких белков набралось более десятка. Затем к делу подключились иммунохимики. Вводя выделенные индивидуальные белки в кровь животных (кроликов, мышей), вызывали выработку у них защитных антител, способных избирательно взаимодействовать с определенным белком или только с его участком. Такие антитела могут служить точным и высокочувствительным инструментом исследования.

Специалисты по электронной микроскопии использовали антитела для картирования пресинаптических белков, т. е. выявления их расположения в нервном окончании в разных стадиях функционирования. Сейчас большие надежды возлагаются на искусство генетиков. Обнаружив участки генома, ответственные за воспроизведение того или иного белка, можно вывести линию мышей-мутантов, лишенных этого белка. А далее — дело физиологов определить, в чем и насколько изменилась работа молекулярной машины, какую роль играла в ней удаленная деталь. Это долгая и кропотливая работа, дающая подчас самые неожиданные результаты. Нобелевский лауреат, биохимик А. Сент-Дьерди когда-то сравнивал исследователя с ребенком, который стремится разобрать подаренную игрушку на составные части, чтобы понять, как она устроена, хотя лучше бы научиться ее собирать. Пожалуй, сегодня исследователи механизмов освобождения только приступают к этому этапу познания. Полученные нами данные о том, что влияние пресинаптических рецепторов может быть адресовано непосредственно внутриклеточным компонентам, открывают новую перспективу в изучении механизмов как освобождения медиатора, так и регулирования функциональных связей между нейронами. Действительно, если, лишив животное определенного пресинаптического белка, удастся устранить регулирования, то будет найдена искомая конечная мишень. У нас уже накопились косвенные улики, позволяющие подозревать один из таких белков. Проверка этой гипотезы — предмет наших будущих исследований.

Глоссарий

Ионные каналы — пути прохождения ионов через мембрану клетки. Изменение их состояния (открыто – закрыто) используется для регулирования работы нейронов.

Медиатор — низкомолекулярное вещество, освобождаемое пресинаптическим нервным окончанием и обеспечивающее перенос сигнала в синапсе.

Постсинаптическая мембрана — участок мембраны управляемой клетки, входящий в состав синапса.

Пресинаптическая мембрана — участок мембраны нервного окончания, входящий в состав синапса.

Рецепторы — белковые молекулы, содержащиеся в пост- и пресинаптических мембранах и воспринимающие химические сигналы медиаторов.

Синапс — структура, обеспечивающая функциональный контакт между нейронами, а также между нейронами и управляемыми клетками.

Синаптическая щель — пространство, разделяющее пре- и постсинаптическую мембраны.

Синаптические пузырьки — структурные образования, накапливающие и хранящие медиатор вплоть до момента его освобождения в синаптическую щель. Мембрана синаптических пузырьков содержит разнообразные белки, предположительно участвующие в освобождении медиатора.

Библиографический список

Большая советская энциклопедия.

Анохин П. К. Биология и нейрофизиология условного рефлекса. М., 1968.

Розенблатт Ф. Принципы нейродинамики. М., 1965.

Ананьев Б. Г. Психология чувственного познания. М., 1960.

Леонтьев А. Н. Проблемы развития психики. М., 1965.

[/sms]

22 сен 2008, 15:45
Читайте также

Информация
Комментировать статьи на сайте возможно только в течении 100 дней со дня публикации.