Последние новости
19 июн 2021, 22:57
Представитель политического блока экс-президента Армении Сержа Саргсяна "Честь имею" Сос...
Поиск

11 фев 2021, 10:23
Выпуск информационной программы Белокалитвинская Панорама от 11 февраля 2021 года...
09 фев 2021, 10:18
Выпуск информационной программы Белокалитвинская Панорама от 9 февраля 2021 года...
04 фев 2021, 10:11
Выпуск информационной программы Белокалитвинская Панорама от 4 февраля 2021 года...
02 фев 2021, 10:04
Выпуск информационной программы Белокалитвинская Панорама от 2 февраля 2021 года...
Главная » Библиотека » Рефераты » Рефераты по физике » Реферат: Диэлектрическая проницаемость и методика её измерения

Реферат: Диэлектрическая проницаемость и методика её измерения

Реферат: Диэлектрическая проницаемость и методика её измерения Историческая справка и понятие диэлектрической проницаемости.

Первыми работами, которые послужили основой для использования методов измерения диэлектрической проницаемости, были работы химика Друде (1897), в которых была установлена эмпирическая связь между строением молекул и диэлектрическими потерями, и Дебая (1925-1929), установившего связь между величиной диэлектрической проницаемости и диэлектрических потерь со строением молекул. Первым аналитическим применением измерений диэлектрической проницаемости было определение содержания влаги (Берлинер, Рютер,1929) в органических соединениях. Позднее были разработаны методы определения чистоты органических соединений, методы анализа бинарных органических систем и в 1950-1960 гг. впервые были опубликованы методы диэлектрометрического титрования органических систем. Следует отметить, что методы диэлектрометрии разработаны главным образом применительно к анализу непроводящих органических систем, что не исчерпывает всех возможностей диэлектрометрии. Итак, относительная диэлектрическая проницаемость ε определяется как отношение ёмкости С конденсатора, диэлектриком у которого является в данном случае исследуемая магнитная жидкость, к ёмкости С0 конденсатора, диэлектрикому которого является вакуум:
[sms]ССε= С0 Свозд

Из этого соотношения видно, что относительная диэлектрическая проницаемость ε является величиной безразмерной и не зависит от выбора системы единиц. Для безвоздушного пространства ε=1, для воздуха ε=1,0006, δля остальных веществ ε > 1. При внесении диэлектрика между электродами конденсатора наблюдается увеличение ёмкости в ε раз. Причиной этого является поляризация диэлектрика, вследствие чего на поверхностях соприкосновения электродов с диэлектриком возникают связанные заряды, способствующие уменьшению в ε раз интенсивности поля Е и разности потенциалов:

Е0ε= Ε

Абсолютная диэлектрическая проницаемость εа, в отличие от относительной, имеет размерность [ф·м-1]. Между абсолютной и относительной диэлектрическими проницаемостями существует следующая зависимость:

εΰ= εε0, γде ε0 - диэлектрическая проницаемость вакуума, имеющая следующую размерность в единицах СИ:

ε0= 107/4πΡ2 ф·м-1= 8.85·10-12 ф·м-1, где скорость света в вакууме С= 2.998·108 м·сек-1. Сила взаимодействия наэлектризованных тел, согласно закону Кулона

F = q1q2,4πεε0 r 2 зависит как от электрических зарядов этих тел q1 и q2 и расстояния между ними r, так и от среды, в которой находятся взаимодействующие тела, характеризуемой абсолютной и относительной диэлектрическими проницаемостями. Смещение электрических зарядов в диэлектрике под действием электрического поля обнаруживается как соответствующий ток смещения. Его мерой является величина диэлектрического тока ID, определяющегося как электрический заряд, который в процессе зарядки или разрядки конденсатора пересёк единицу поверхности, находящуюся перпендикулярно направлению перемещения заряда. Между величиной электрического поля Е, плотностью тока смещения ID и относительной диэлектрической проницаемостью существует линейная зависимость ID = εε0 E. ок смещения существует и в проводниках. При наложении постоянного напряжения на проводник через него протекает большой ток. В этом случае можно говорить о диэлектрической проницаемости проводящих веществ. Из сказанного видно, что диэлектрическая проницаемость является мерой поляризации диэлектрика и является константой, присущей данному веществу.

Зависимость диэлектрической проницаемости от различных физических величин.

При измерении диэлектрической проницаемости исследуемого вещества необходимо помнить и учитывать зависимости проницаемости от различных величин. Например, если диэлектрик находится в переменном электрическом поле, то его поляризация зависит от частоты поля. При низких частотах изменение индукции следует за изменением поля без запаздывания. Изменение электрического поля и поляризация находятся в фазе и относительная диэлектрическая проницаемость имеет максимальную величину (ε = ε'). Ρ повышением частоты ориентация диполей всё больше не успевает следовать за изменением поля. Происходит отставание по фазе ориентационной поляризации молекул от изменений поля и при очень высоких частотах ориентационная поляризация полностью исчезает (ε' << ε) - νаблюдается так называемая дисперсия диэлектрической проницаемости. Температурная зависимость диэлектрической проницаемости имеет сложный вид, зависит от структуры вещества и применяемой для измерения частоты. Особенно сильные изменения температурной зависимости диэлектрической проницаемости наблюдаются при структурных изменениях молекул, при фазовых переходах и т.п. Величина диэлектрической проницаемости в значительной степени зависит от структуры молекулы. Для веществ, имеющих полярные молекулы, и, следовательно, дипольные моменты, диэлектрическая проницаемость велика. У электрически симметричных молекул результирующий дипольный момент практически равен нулю. С уменьшением симметричности молекулы величина диэлектрической проницаемости увеличивается. Что касается зависимости диэлектрической проницаемости от агрегатного состояния вещества, то здесь нам интересны коллоиды и эмульсии. Эти состояния, в которых могут находиться магнитные жидкости, имеют много общих диэлектрических свойств. Диэлектрическое поведение водных коллоидных растворов определяется структурой коллоидных частиц. На величине диэлектрической проницаемости сказываются также физико-химические свойства коллоидов, такие, как анизотропия, образование мицелл. У гидрофильных коллоидов (желатин) часть молекул воды внедряется в мицеллы и не участвует в ориентационной поляризации. Вода, связанная в мицеллах в отличие от свободной имеет диэлектрическую проницаемость ε ≈ 2. Для эмульсий, как и для коллоидов, простые уравнения смешения не применимы, так как результаты зависят от степени дисперсности дисперсной фазы. Если в дисперсной среде, имеющей диэлектрическую проницаемость ε2, распределена нерастворимая фаза с проницаемостью ε1, то для получаемой при этом разности диэлектрических проницаемостей Δε=εύм-ε2 применимо уравнение Δε =ε v 11 (+ε12 -ε v 21 )( (εε 12 -+ε 22 )),

где v1 -объёмная доля дисперсной фазы. При постоянной величине
v1 Δε πастёт с увеличением степени диспергирования твёрдой фазы
или степени эмульгирования жидкости.
Использование последней формулы для водных эмульсий показало,
что эмульгированная вода даёт значительно меньшую величину Δε,
χем растворённая. Этот эффект находит значительное техническое
применение, например для определения содержания воды в
трансформаторном масле.

Метод измерения диэлектрической проницаемости.

В современных методах определения величины диэлектрической проницаемости используется как постоянный ток, так и переменный ток в широком диапазоне частот.

Измерения методами переменного тока распространены боле широко. Это связано с тем, что они дают обширную информацию о структуре и свойствах диэлектрика, позволяют определять диэлектрическую проницаемость жидкостей и растворов электролитов, обладающих электропроводностью, и наконец, приборы - диэлектро-метрические ячейки - в большинстве случаев являются компактными и более удобными для различных физико-химических исследований. Мостовые методы по принципу работы делятся на две группы: 1) нерезонансные или простые мосты различного типа, которые используются главным образом при низких частотах и 2) резонансные мосты, условия равновесия которых зависят от частоты и которые могут применяться при высоких частотах . Резонансные мосты, как правило, имеют более высокую чувствительность по сравнению с нерезонансными мостами. Кроме того, мостовые методы измерения позволяют производить отдельный отсчёт активной и реактивной составляющих полного сопротивления. Для измерения диэлектрической проницаемости могут быть использованы ёмкостные, индуктивные и контактные ячейки. В данном эксперименте использовались контактные ячейки. Достоинством таких ячеек является линейная зависимость между измеряемой ёмкостью С и диэлектрической проницаемостью ε исследуемой жидкости. Особенностью таких ячеек является поляризация электродов при низких частотах, которая является причиной погрешностей. Поскольку в настоящее время все методы измерения диэлектрической проницаемости основаны на сравнении ёмкости конденсатора, диэлектриком у которого является исследуемое вещество, обладающее, как правило, проводящими свойствами, то поляризация электродов, возникающая при низких частотах, также создаёт определённые погрешности при измерении ёмкости. Основным условием использования контактной ячейки для измерения диэлектрической проницаемости является выбор достаточно высокой частоты, при которой поляризационное сопротивление и ёмкость равны нулю. Вторым условием является необходимость устранения ёмкости двойного слоя СД. Это достигается применением электродов с достаточно развитой поверхностью (например, платинированием).

Диэлектрические характеристики магнитных жидкостей.

Диэлектрическая проницаемость ε большинства диэлектриков, характеризующая их поляризацию в электрическом поле, не зависит от напряжённости поля, но зависит от его частоты. Для магнитных жидкостей важным физическим параметром является концентрация твёрдой фазы, относительная диэлектрическая проницаемость которой выше, чем проницаемость жидких основ. Присутствие полярных молекул поверхностно-активного вещества в магнитной жидкости также влияет на её диэлектрическую проницаемость. Р.Розенцвейг и Р.Кайзер (1969) определили относительную диэлектрическую проницаемость порошка из коллоидных частиц магнетита ε≈15 на частотах 400 Гц и 1 кГц. Н.И. Дюповкин и Д.В.Орлов (1983) исследовали магнетитовые магнитные жидкости на основе керосина, стабилизированные олеиновой кислотой, в диапазоне частот 102-7*104 Гц. При увеличении объёмной концентрации магнетита от 5 до 19.5% относительная диэлектрическая проницаемость монотонно возрастала от 3 до 9 на частоте 100 Гц. С увеличением частоты изменения электрического поля, создаваемого в межэлектродном пространстве ячейки с плоскопараллельными электродами, относительная диэлектрическая проницаемость плавно уменьшалась, причём наиболее резкий спад наблюдался в диапазоне частот 102-103 Гц. Измерения Г.М.Гордеева с соавторами (1983) относительной диэлектрической проницаемости близких по характеристикам магнитных жидкостей в диапазоне частот 105-107 Гц согласуются с данными Н.И. Дюповкина и Д.В.Орлова на верхней границе частот. Эта частотная зависимость диэлектрической проницаемости ε и тангенса угла диэлектрических потерь tg δ получена при комнатной температуре. Из полученных графиков видно, что относительная диэлектрическая проницаемость исследованных образцов практически постоянна в указанном диапазоне частот. Графики для керосина и олеиновой кислоты располагаются ниже значений ε для магнитных жидкостей. Зависимость тангенса угла диэлектрических потерь от частоты электрического поля характеризуется резким падением в диапазоне частот 102-5*106 Гц, причём на частоте 105 Гц диэлектрические потери для магнитных жидкостей на порядок превышают tg δ для керосина. Одна из причин роста диэлектрических потерь с уменьшением частоты электрического поля может заключаться в джоулевых потерях, связанных с проводимостью магнитной жидкости. [/sms]

16 окт 2008, 10:00
Читайте также

Информация
Комментировать статьи на сайте возможно только в течении 100 дней со дня публикации.