Последние новости
19 июн 2021, 22:57
Представитель политического блока экс-президента Армении Сержа Саргсяна "Честь имею" Сос...
Поиск

11 фев 2021, 10:23
Выпуск информационной программы Белокалитвинская Панорама от 11 февраля 2021 года...
09 фев 2021, 10:18
Выпуск информационной программы Белокалитвинская Панорама от 9 февраля 2021 года...
04 фев 2021, 10:11
Выпуск информационной программы Белокалитвинская Панорама от 4 февраля 2021 года...
02 фев 2021, 10:04
Выпуск информационной программы Белокалитвинская Панорама от 2 февраля 2021 года...
Главная » Библиотека » Рефераты » Рефераты по физике » Реферат: Закон Стефана-Больцмана и закон смещения Вина

Реферат: Закон Стефана-Больцмана и закон смещения Вина

Реферат: Закон Стефана-Больцмана и закон смещения Вина Мы с Вами получили связь между плотностью лучистой энергии и испускательной способностью абсолютно черного тела и формулу Планка для плотности энергии. Это позволяет нам записать выражение для испускательной способности абсолютно черного тела:

Это выражение также называют формулой Планка. С ее помощью можно получить закон Стефана-Больцмана - связь энергетической светимости абсолютно черного тела с температурой.
[sms]Величина σ называется постоянной Стефана-Больцмана и ее значение, подсчитанное с помощью формулы Планка, весьма точно совпадает с определенным экспериментально.

Закон смещения Вина связывает температуру и длину волны, на которую приходится максимум излучения абсолютно черного тела:

Чтобы получитьвыражение для b, нужно исследовать функцию на экстремум. Принципиальных проблем в этой связи не возникает, но вычисления оказываются достаточно громоздкими. И тем не менее, учитывая огромную важность формулы Планка, нам следует заняться этими вычислениями.

Прежде всего перейдем в функции от переменной к переменной λ. Проследите внимательно за выкладками:

Решить это уравнение "напрямую" нам не удастся. Поэтому перепишем его в виде и решим методом последовательных приближений, в данном случае весьма эффективным.

Полученное нами значение b очень хорошо совпадает с экспериментальным значением.

Сами законы Стефана-Больцмана и закон смещения Вина были установлены раньше, чем была получена формула Планка. То, что из нее были затем получены верные значения констант σ и b, явилось блестящим подтверждением верности тех представлений, которые были заложены при ее получении. Но смысл этих представлений нам еще нужно осознать.

Оптическая пирометрия

Установление законов Стефана-Больцмана и закона смещения Вина позволили создать измерители температуры, работающие без контакта с горячим, лучшее сказать, с раскаленным телом.

Радиационные пирометры. Такие пирометры основаны на фокусировке излучения раскаленной поверхности на некотором теплоприемнике. Замечательно, что яркость резкого (сфокусированного) изображения не зависит от расстояния до объекта, если это последнее велико по сравнению с фокусным расстоянием объектива. Собственно, приходящую от удаленного объекта волну можно считать плоской, отчего попадающая на теплоприемник энергия слабо зависит от расстояния. Важно только, чтобы создаваемое объективом изображение полностью перекрывало теплоприемник.

 

Разумеется, предварительно производится градуировка пирометра по абсолютно черному телу. Но поскольку энергетическая светимость реальной раскаленной поверхности при той же температуре меньше светимости абсолютно черного тела (в соответствии с законом Кирхгофа), измеренная радиационная температура оказывается меньше действительной.

В справочниках имеются соответствующие поправочные коэффициенты, учитывающем отличие светимости поверхностей реальных материалов от светимости абсолютно черного тела. Любопытно, что значения этих коэффициентов в свою очередь зависят от температуры.

Яркостные пирометры. Как следует из названия, действие такого пирометра основано на сравнении яркости свечения тела, температура которого измеряется, и некоторого другого - нити лампы накаливания. Наиболее удобным здесь оказался красный цвет и именно через красный светофильтр производится в этом случае наблюдение

яркость нити по отношению к фону

(λ=660 нм).

Применение пирометров обычно связано с металлургией. Производится наблюдение, например, окошка в стенки доменной или мартеновской печи. На фоне изображения светящегося окошка наблюдается нить лампочки накаливания. Регулируя ток через лампочку, добиваются уравнивания их яркостей в красном цвете. При этом нить лампочки становится невидимой - потому такой пирометр называют пирометром с "исчезающей" нитью.

 

Пирометр градуируется по абсолютно черному телу - при изменении тока накала по находящейся в поле наблюдения шкале считывается температура черного тела, при котором нить должна "исчезает". Естественно, поскольку светимость реального тела при той же температуре меньше, для достижения равенства яркостей черного и нечерного тел это последнее должно быть нагрето сильнее, яркостная температура оказывается завышенной.

Цветовые пирометры. Серое тело имеет тот же спектральный состав, что и абсолютно Об G черное тело. Поэтому температуру серого тела можно определить в соответствии с законом смещения Вина, определив длину волны λm, на которую приходится максимум излучения. Однако, вместо исследования всего спектра излучения, производится измерения светимостей на двух различных частотах (при двух значениях длин волн) и по их отношению определяется температура тела. Заметим, что для черного тела при любой температуре это отношение известно.

 

Собственно, такой пирометр отличается от радиационного тем, что наблюдения производятся через сменные светофильтры.

Теплоемкость кристаллической решетки

Носителями энергии равновесного теплового излучения согласно концепции Планка являются стоячие (электромагнитные) волны. При этом энергия для каждой частоты отмеряется "порциями", квантами ћω, κоличество которых определяется распределением Больцмана: И весьма интересно, что в совсем другой задаче, задаче о теплоемкости кристаллической решетки опять-таки "проходит" такой же подход.

Однако, сначала нужно сказать несколько слов об истории вопроса. Содержащий N атомов кристалл имеет 3N степеней свободы - столько значений координат необходимо для описания положения атомов. Согласно классическим представлениям на каждую степень свободы должна приходиться энергия kT: по kT/2 на кинетическую и на потенциальную энергию. Отсюда следует закон Дюлонга и Пти, согласно которому молярная теплоемкость Cm всех кристаллов одинакова:

И действительно, при достаточно высоких температурах этот закон оказывается справедливым, но он нарушается при низких температурах. И причина в том, что при

низких температурах и при достаточно высоких частотах колебаний оказывается ћω>kT, а между тем величина ћω - μинимальная порция энергии на частоте ω. Значит, при низкой температуре невозможна энергия kT на степень свободы.

Поправить дело попытался Эйнштейн. Он ввел квантование для энергий колебаний отдельных атомом кристалла (3N осцилляторов), введя для каждого среднюю энергию. При этом распределение осцилляторов по энергиям он считал подчиняющимся распределению Больцмана. Полученное им выражение качественно верно описывало поведение теплоемкости и вблизи нулевой температуры. Но много более точный результат был получен Дебаем. Дебай посчитал, что колебания отдельных атомов не являются независимыми - колебания одного атома вынуждают колебания соседних атомов. Иначе говоря, колебания представляют собой стоячие волны. Любопытно, но количество возможных стоячих волн должно совпадать с числом степеней свободы - 3N. Собственно, рассуждения Дебая в основном повторяют рассуждения Планка. Выбрав некий объем в виде прямоугольного параллелепипеда V=abd, подсчитывается количество возможных стоячих волн. Условия существования стоячей волны остается прежним: произведение составляющей волнового вектора на соответствующий размер тела должен быть равен целому числу π. Для струны это сводится к условию кратности ее длины длине полуволны:

При таком условии вышедшая из некоторой точки волна после отражений от краев пластины возвращается в то же точку с той же фазой. Пояснение этому утверждению дается. Введем радиус-вектор, соединяющий точки 1 и 2.

 

Движение волны вдоль этого радиус-вектора эквивалентно распространении волны в пределах пластины. И поскольку, волна из точки 1 в точку 2 придет с изменением фазы на целое число 2π. Ηначит, это утверждение справедливо и для распространения волны в пределах пластины из точки.

На рисунке схематически показана 1/8 часть сферы радиуса k в пространстве kвекторов и соответствующая часть сферического слоя толщиной Δk. На один конец k вектора приходится объем.

Следовательно, количество k - векторов с модулем в пределах от k до k+Δk и положительными проекциями на оси будет.

 

Мы учитываем только k-векторы с положительными проекциями на оси. Смена знака одной из проекций происходит при отражении волны, но это та же волна, повторно учитывать ее не следует.

Количество таких k-векторов на единицу объема кристалла.

Поскольку, мы можем перейти в этом выражении к частотам. Кроме того, необходимо еще добавить множитель 3, поскольку упругие колебания могут происходить в направлении распространения волны и в двух взаимно перпендикулярных поперечных направлениях. Таким образом, переходя к дифференциалам, получаем.

Такова плотность стоячих волн в кристалле. Однако с подсчетом энергии колебаний здесь возникают некоторые особенности, о которых речь пойдет ниже. [/sms]

16 окт 2008, 10:32
Читайте также

Информация
Комментировать статьи на сайте возможно только в течении 100 дней со дня публикации.